
– 10 –

such cases it is sufficient to use a Tk application that flushes each line or uses the send

mechanism, but this means that some good Unix tools cannot be used sometimes.

The third problem concerns the send primitive. In the file manager application ac-

cess is needed to this primitive by the front– and back–ends, but they do not require

windows. This either leads to redundant wish windows or to yet another custom–

built Tk interpreter. It would be desirable if some similar communication model was

available at the tcl level.

Conclusion

This paper has shown that a typical file manager holds the seeds of a number of other

applications and can be easily generalised to encompass them. The choice of imple-

mentation framework can have quite an effect on the ease of this, and Tcl/Tk is quite

appropriate for building small, reusable communicating applications.

References

[1] J. D. Newmarch, ‘‘XmFm – An X/Motif File Manager,’’ Proc AUUG Confer-

ence, 1993 (to appear).

[2] P. Haahr, B. Rakitziz, ‘‘Es: A shell with higher order functions,’’ Usenix Confer-

ence Poceedings, Winter 1992.

[3] H. R. Williamson, ‘‘Teach Yourself Chinese,’’ Hodder and Stoughton, 1947

– 9 –

ls | classify+display+select –sendTo refine &
refine | sh

This could be useful if one wanted many versions of classify+display+se-
lect to be able to run simultaneously, but at most one copy of refine: it could

check on the number of other copies running and exit if already running. Each copy

of classify+display+select would send to the only running copy of re-
fine.

The classification and refinement languages are implemented as tcl files that are

sourced into the component. Some of the file will consist of commands understood

by the component. The classify+display+select application defines the

procedure

classifier ?class ?classifier–function ?bitmap

which defines a new class, its recogniser function and its bitmap to the classi-
fy+display+select application. The configuration file can then contain en-

tries such as

classifier Makefile {regexp {^[Mm]akefile$}} \
 @makefile.xbm

which will run the regexp command with suitable parameters to recognise the class

Makefile with bitmap makefile.xbm. Any defined tcl procedure can be used, and

any procedures needed that are not already in tcl can be defined in the configuration

files. This removes any limits from the configuration languages.

Status of Implementation

Some of these ideas were tested in an Xt/Motif version, which has since been dis-

carded. Modifications have been made to wish so that it behaves as described when

it is iwish. The two basic applications ‘‘classify.tk” and ‘‘refine.tk”

have been implemented, although they currently only take options from the com-

mand line instead of from the resource database.

This allows simple compound applications to be built such as the address book and

jukebox. They can be run with each component as a separate application, or sourced

together into a single toplevel window. The file manager requires a more complex

‘‘front–end” feeding directory information into the pipeline (or composite applica-

tion) and a ‘‘back–end” that either executes commands or sends chdir information

back to the other stages. This has been implemented to the basic functionality of

xmfm, but without many of the ‘‘bells and whistles”. These can be added fairly easily.

Problems of Implementation

The lack of modularity in tcl is a problem as it forces the application writer to pay

close attention to naming conventions.

The Unix pipeline generally works okay. However, it is not ideal for interactive pro-

grams due to the buffering that can exist in I/O buffers and in the pipeline itself.

Where applications in the pipeline are line–buffered or raw there is no problem, but

some do not allow this buffer control. This then results in a stage ‘‘hanging” as it

awaits its input. For example, commands such as sed can cause buffer delays. In

– 8 –

Figure 5: A jukebox

tinue to read from standard input. This is needed for these tools, but is also of general

use as it allows command line interaction with any wish based system*.

To allow more sophisticated communication than is given by the pipeline, use is

made of the Tk send mechanism. Each component is built so that its major actions

are controlled by tcl procedures. These form the public interface to each component.

The lack of a hiding mechanisms in tcl causes problems with this and some ‘‘hiding–

convention” is needed to deal with this.

By default, the applications read from standard input and write to standard output.

The input is expected to be tcl procedure calls that the procedure understands, and

the output has the syntax of tcl procedure calls that hopefully can be understood by

a later component of the system. In addition, as explained, an application can accept

Tk send input. To direct the output in a suitable manner, these applications all have

a command line option –sendTo application. If this is defined, then output

is directed to the named application instead of to standard output.

This communication model allows a great deal of flexibility, sufficient to overcome

the communication problem for a file manager: the ‘‘action” command at the end of

the pipeline simply sends a ‘‘cd” message and then an application specific ‘‘refresh”

to each earlier component of the pipeline. Indeed, it even allows one to throw bits of

the pipeline away:

––––––––––––––––––––––––––––
*An Internet posting also suggested using cat file – | wish This
avoids modifications to wish, but loses the interactive prompt.

– 7 –

Figure 4: Chinese ideographs from words

Implementation

A prototype of this system was built by breaking the xmfm code into the separate bits.

This was done using the Xt toolkit with Motif interface. Shell programming expres-

sions were used for the classification language (with the choice of shell made by the

user), but for all the other design issues, this choice of system implementation failed.

A full implementation is now under way using Tcl/Tk. The components are all being

built as files of procedures which can be incorporated (using the tcl command

source) into larger applications. To make a standalone component, the file is incor-

porated into into a simple framework that basically adds a ‘‘quit” button. To make

composite applications, more than one of these procedure files is sourced.

Either Tcl or the shells allow standalone components to be connected in pipelines.

This means that a standalone component should be able to read from standard input.

A simple modification to the wish interpreter was made so that if the comand name

is iwish (interactive wish) then it will both read a command line file and then con-

– 6 –

Figure 3: Departmental information

This would be harder to do if each component required a complicated framework be-

fore it could be used. The Unix application level seems appropriate.

On the other hand if each graphical component were stand–alone, it would lead to

very fragmented interfaces with bits of a composite application all over the screen.

Some means needs to be found to link them into higher–level applications.

The second issue concerns the classification and refinement languages. xmfm uses

shell expresions whereas X.desktop and Looking Glass use proprietary lan-

guages. For full generality, something with the power of a real programming lan-

guage is needed, but it should not be a one–off language just for this system.

The third issue concerns the pipeline model. While this works well in many applica-

tions, it actually fails for one action common in file managers: changing directories.

A change of directory has to be fed to all components, so that the data comes from

the new directory, the classification is performed in the right directory (for example,

if the classification language uses the type of a file, it must be able to access the file),

and the action must be performed in the correct directory. This requires a method to

inform all components of the directory change. This is very hard in a pipeline, unless

‘‘special case” methods are built into the components to recognise such directory

changes. The point is not that it can’t be done, but the methods to solve it for pipelines

don’t generalise easily to new situations.

– 5 –

Figure 2: A simple filemanager

people. The classification could be into department, with a symbol typical of that de-

partment shown, The classification and display would show names and the depart-

ment they belong to. Selection of any person within this list could then lead to refine-

ment: choose the work phone number of the person, their home phone number, a map

of how to reach them, or other information. The final component (instead of just a

shell) would actually perform the appropriate action. This is shown in Figure 3.

A second use is as an aid to language learning. In learning languages with ideograph-

ic character sets such as Chinese, one first learns a Romanised system[3]. After this

comes the association with the ideographs. Using a classification where a Romanised

phrase is matched to its ideograph gives an ‘‘ideograph generator,’’ as shown in Fig-

ure 4.

Another use is as jukebox. A list of composer names could be the data, with their pic-

ture as the icon. Selection of a composer could then bring up a list of their works, and

further selection of one of these would send the name of the work to an audio applica-

tion that would play it. This is shown in Figure 5.

Further Design Issues

Before proceeding to implementation, there are a number of design issues that need

to be addressed.

The first of these concerns the eventual granularity of the applications. Each compo-

nent will need to be a standalone application so that it can be combined with any other

applications that the user has. For example, the user may wish to have a filter between

selection and refinement, perhaps based on access permissions:

ls | classify+display+select | security–filter |
refine | sh

– 4 –

The third component of a file manager is simple: it allows selection of instances. The

only variation between managers seems to be whether they allow multiple selection

or single selection only.

The next component is common to all file managers, but has different expressions

in each: an action may be performed on an instance of an object. xdtm allows the

user to select a task situation, and apply any element of the task to the instance.

X.desktop (like Microsoft File Manager) allows only a single application to apply

to an instance. Both Looking Glass and xmfm allow a (fixed) range of applications

to apply to an instance. Obviously, I prefer the xmfm model: it reflects the idea that

an object has many methods that can apply to it; the object contains the information

about its methods, versus the Microsoft version in that a single application contains

all of the methods applicable to a object.

Connection betwen Components

These three components appear to be inseparable: display, classification and selec-

tion of instance data. The choice of data in file managers depends on filters: separat-

ing this out gives a more general component.

xmfm and Looking Glass allow a refinement of instance methods; xdtm allows

selection of task method; the others only have single action. The general case is: re-

fine a selected instance into a method for the object.

Finally the chosen method on the selected object must be acted on.

A file manager thus consists of four components: data, classification+display+selec-

tion, refinement, and action.

The file managers considered so far are monolithic, performing all of these compo-

nents internally. If they are separated out, how will they communicate? There are

heaps of IPC methods. The simple Unix pipeline model decribes the mode apparently

needed:

ls | classify+display+select | refine | sh

Generalisation

Breaking the file manager into components by itself allows a variety of uses. Filter-

ing may be performed by changing the input function:

ls –a | ...
ls *.c *.h | ...

The person only interested in a graphical display of data can execute

ls | classify+display+select

The ‘‘refine” component can be changed between a single refine as in filemgr and

X.desktop, or a multiple refine as in xmfm and Looking Glass. A file manager

built out of these components is shown in Figure 2. (In this and later figures, the ob-

ject selected is highlighted by a surrounding box.

Other Uses

Of more general interest, though, is that the processes of classification and refine-

ment may be configurable. For example, the input data may be a list of names of

– 3 –

for display of data. For example, a common command–line cycle is ls, vi,
..., ls, where the repeated ls commands are due to the loss of information due

to other activities. Even binding the PageUp key to the xterm scrollbar doesn’t real-

ly help.

Problems with File managers

File managers have nowhere near the flexibility of the command line interface. The

command line accessible from xmfm and Looking Glass requires extra keystrokes

or mouse actions to reach (the fastest is Meta–C in xmfm). It would be possible to

add keyboard accelerators such as ‘‘!!” to xmfm, but such changes are adhoc, and

anyway already exist in most shells. The real problem is that the shells already do this

well: why have to rebuild it afresh?

All file managers take up a large amount of real–estate in showing directories. The

addition of menu–bars, etc uses even more space. xmfm uses a substantial amount

in showing the possible actions that can be performed on a file. On a large high–reso-

lution screen this is not a serious problem, but on smaller screens it is. This offends

the ‘‘parsimony” principle that many Unix people work under. Using space when

necessary is fine, but wasting space is not.

One Internet posting seemed to suggest that what the poster used in xmfm was firstly

its graphical display of objects and secondly the inclusion of Roger Reynolds’ Drag

and Drop, which allowed xmfm to be used with other tools; the other facilities in

xmfm were not mentioned – were they of any use to this user? If not, should they be

there?

The Components of a File Manager

The best component of a command–line system is its flexibility. It will be hard to

duplicate this in a windowing system. Therefore a ‘‘power user” will often still drive

out of a command line. Where the command line loses advantages is in the display

of data. A primary component of a file manager is this display activity.

But display of what? Display all files, or just a subset? All file managers have a filter

mechanism, which duplicates to greater or lesser extent the shell pattern matchers.

It would be far simpler to let the shell perform the match, and just use its output for

display.

Thus, the primary component is as a graphical display of distinct pieces of informa-

tion, supplied by some input source.

The information supplied is normally categorised: for example, a different icon for

C source code files to the icon for tar archive files. The mechanisms to perform this

categorisation differ widely: xmfm uses shell file patterns whereas Looking Glass

and X.desktop use proprietary command languages that can peek into files as well

as perform simple pattern matches. Whatever mechanism is used, the result is also

a feature of file managers: they classify input data into classes, with a distinct icon

for each class.

Thus, the second component of a file manager is that it classifies instances into their

classes.

– 2 –

Without discarding xmfm for the more casual user, this paper reports on a redesign

that is intended to allow the best features of command line environments to be used

and bring in graphical features where appropriate. It forms a component of a project

XBatch which aims at bringing graphical and command line interfaces closer togeth-

er.

The new design allows relevant bits of a file manager to be used where appropriate.

In addition, the bits are highly configurable and may be used in quite different ways

to the original design. The paper discusses some alternative uses such as an address

book.

X File Managers

There are a number of file managers available for X nowadays. There is the fi-
lemgr from Sun for the OpenLook environment, Looking Glass from Visix,

X.desktop from IXI, the freely available xdtm, and the freely available xmfm
from the author.

These file managers all share common features: they give a graphical display of the

files in a directory, and when a file is selected allow a ‘‘suitable” application to be

started on or using the file. Beyond this, they begin to diverge.

xdtm, for example, adopts a ‘‘task oriented” model, in which the user has a set of

tools applicable to a task that can be invoked on the selected files. In a ‘‘program

building” task the tools are editors, compilers and debuggers, and they can be applied

to any file in the display.

X.desktop and filemgr attach a single application to each file that can be in-

voked. xmfm and Looking Glass attach a set of applications to each file so that one

of this set can be invoked on the file.

xmfm and Looking Glass allow direct access to a shell interpreter from a pull–down

menu for commands that are not supported directly by the file manager. Looking

Glass and X.desktop provide additional tools, and filemgr exists (usually) in

the rich OpenLook environment.

Command Line Interpreters

The Unix shell interpreters have always been powerful, if a bit quirky. The current

generation such as the Korn shell have added job control mechanisms, filename

completion and easy history editing to the standard repertoire of loops, pipes and

command evaluation. Next generation shells such as es[2] are under development.

Features such as command line editing allow repetitive tasks to be performed very

easily. When the edit/compile/debug cycle is contained within two ‘‘up arrow” key

motions it is not clear that the mouse ‘‘select and double–click” is really an improve-

ment. In addition, random tasks can be accomplished very quickly within this model

by just typing a different command. Finally, activities can be suspended and resumed

using the job control mechanisms of these shells.

However, the command line interface is clearly not ideal. Job control is fairly crude

and was beginning to give way to virtual consoles which could be switched between.

Now one can just switch focus on xterm’s. More seriously though, they are not good

– 1 –

Generalising a File Manager into an
Address Book and Other Things

J. D. Newmarch
Faculty of Information Science and Engineering

University of Canberra
PO Box 1 Belconnen
ACT 2616 Australia

email: jan@pandonia.canberra.edu.au

Introduction

Last year, I designed and implemented a file manager called xmfm[1] (X/Motif File

Manager – see Figure 1). This was released on alt.sources, and has received a favour-

able reception. It has been in use by staff and students at the University of Canberra

for some time. The next section describes xmfm and other file managers in brief.

After a considerable period of use, I have been able to look at the good and bad fea-

tures of xmfm. In general, the bad features are not significant but they they have had

an effect on a certain class of user: the Unix ‘‘power users,” who have extensive expe-

rience with the older command line interface, and who have adopted the newer shells

which extend in subtle ways the older shells. For these users (myself included), xmfm
is simply too monolithic and inflexible, and so these users continue to use a number

of xterm’s running the Korn shell, the tcsh, bash or the Z–shell.

programs

data

directories

Figure 1: xmfm

